


附表1

2025

完成人合作关系说明

- **郭晓敏:** 作为项目总负责人,主导整体规划与资源协调,推动研究成果在学术论文、专利布局及实际应用中的多层次转化,并领导合作团队完成所有核心技术创新与产品化推进。
- **常 姗:** 作为项目核心成员,负责推进基础研究实施,提供关键研究方向与思路, 主导学术论文与专利的撰写与申请,并参与部分成果推广工作。
- **王浩冲**:担任项目技术指导,负责研究方法设计与优化,参与论文与专利文本的 撰写,提供关键技术思路,指导实验开展并推动部分成果向应用转化。
- **韩丞丞**:作为项目组成员,承担项目中生物信息数据分析与挖掘,推进相关算法的专利布局,参与论文撰写与实验验证,并协助软件产品的开发与优化。
- **钱 辰:** 作为项目组成员,负责生物信息分析,推进数据分析方法的专利化,参 与论文撰写、实验实施及成果在产品开发中的落地应用。
- **史改革:**作为项目研究成员,参与基础研究及实验工作,贡献研究思路,协助论 文和专利的撰写与申请,并加入成果推广及示范应用等任务。
- **董文丽:**参与项目的基础研究与实验实施,提供研究思路,协助学术论文和专利的撰写,支持成果推广与实际应用测试。

完成人合作关系情况汇总表

序号	合作方式	合作者/项目排名	合作起 始时间	合作完 成时间	合作成果	证明材料
1	共同知识产权	郭晓敏(1) / 常姗(2)	2020年1 月	2024年 10月	基于机器学习的脑血管病诊 断方式	附件1
2	共同知识产权	王浩冲 (3) / 史改革 (6) / 董文丽 (7)	2020年1 月	2024年5 月	运动想象脑电信号分类方法、装置、设备和存储介质	附件 2
3	共同知识产权	郭晓敏(1)/ 常姗(2)	2020年1 月	2024年8 月	认知功能障碍脑电分析软件	附件9
4	共同知识产权	王浩冲(3)/ 史改革 (6)/ 韩丞丞(4)	2021年1 月	2024年3 月	一种高精度脑电信号采集方 法及装置	附件 11
5	共同知识产权	王浩冲(3)/ 史改革 (6)/ 韩丞丞(4)	2020年1 月	2024年1 月	一种脑电装置的数据同步方 法及脑电装置	附件 10
6	共同立项	郭晓敏(1) / 常姗(2) /王浩冲(3) /韩丞丞 (4) / 钱辰(5) /史 改革(6) /董文丽(7)	2023 年 10 月		基于非线性脑电分析的认知功能障碍病理机制研究	附件 17
7	共同立项	郭晓敏(1)/王浩冲(3) /史改革(6)/董文丽 (7)	2023年2 月	2024年2 月	脑电数据分析技术	未列入 附件
8	共同立项	郭晓敏(1)/韩丞丞(4)	2022年 10月	2024年 10月	立体视觉刺激诱发脑机接口 康复训练技术研发	未列入 附件

承诺:本人作为项目第一完成人,对本项目完成人合作关系及上述内容的真实性负责,特此声明。