

附表 1

完成人合作关系说明

作为陕西省科学技术进步奖项目的第一完成人,我深感荣幸能够与一群优秀的 科研人员共同合作。

我们与第二完成人合作开发超薄阻燃固态电解质膜技术,成功解决了固态电解 质材料成膜工艺中的瓶颈问题。这项技术在提高固态电解质膜生产效率的同时降低 了制备成本,同时保证了电解质膜的稳定性和一致性。

我们与第三完成人合作开发固态电解质膜材料的优化设计技术,通过高空隙的 聚烯烃支撑层、快离子陶瓷、聚合物的热复合工艺,成功解决了传统固态电解质材料成膜工艺中的稳定性和一致性问题,提高了生产效率,降低制备成本。

我们与第四完成人合作设计开发智能化量产工艺技术,完成了固态电解质膜的规模化工艺开发,建立了稳定可靠的工程化产线和完整的质量控制体系,成功实现了固态电解质膜批量化卷对卷工程化生产工艺。

我们与第五完成人合作设计开发智能化量产工艺技术,完成了硅碳材料的规模 化工艺开发,建立了稳定可靠的工程化产线和完整的质量控制体系,成功实现了硅 碳材料低成本工程化生产工艺管理。

这些紧密合作的经历不仅使本项目在科研上取得了重要成果,也建立了深厚的 友谊和信任。我们相信,只有通过团结协作,才能不断攀登科技高峰,为陕西省的 科技进步和社会发展贡献更多的力量。

第一完成人签名:

1

完成人合作关系情况汇总表

序 号	合作 方式	合作者/项 目排名	合作起始时间	合作完成时间	合作成果	证明材料
1	共同 知	刘婷/2	2017.09.01	2022.01.01	一种阻燃超薄 PEO 基固态电解 质的制备方法	必备附件 1-1-1
2	论文	汪朝晖/3	2020.01.01	2022.01.01	A cellulose reinforced polymer composite electrolyte for the wide-temperature range solid lithium batteries.	其他附件 2-2-19
3	论文合著	王鑫/4,	2021.01.01	2022.01.01	Technological penetration and carbon-neutral evaluation of rechargeable battery systems for large-scale energy storage	其他附件 2-2-20
4	论文合著	穆天/5	2021.01.01	2022.01	Technological penetration and carbon-neutral evaluation of rechargeable battery systems for large-scale energy storage	其他附件 2-2-20

承诺:本人作为项目第一完成人,对本项目完成人合作关系及上述内容的真实性负责,特此声明。

第一完成人签名:

